Федеральное агентство научных организаций (ФАНО России)

ФГБНУ «ВСЕРОССИЙСКИЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИН-СТИТУТ ЖИВОТНОВОДСТВА ИМ. АКАДЕМИКА Л.К.ЭРНСТА» (ВИЖ им. Л.К. Эрнста)

636.2.084.1 + 636.2.087.8	УТВЕРЖДАЮ
	Директор ВИЖ им. Л.К. Эрнста академик РАН
	Н.А. Зиновьева
	«»2017 г.

ОТЧЕТ

о выполнении НИР по договору № 305 от «01» октября 2016 г. с ООО «Алтбиотех»

по теме: «Определить эффективность скармливания биотехнологической продукции (пробиотики) в рационах коров и молодняка крупного рогатого скота»

Продолжение на следующем листе

- Дубровицы, 2017 г. –

СПИСОК ИСПОЛНИТЕЛЕЙ

Руководитель темы,		
Ведущий научный сотруд-		
ник, руководитель лабора-		
тории,		
кандидат сх. наук, доцент		Р.В. Некрасов
	подпись, дата	(раздел 1 - 6)
Исполнители темы:		
Главный научный сотруд-		
ник,		
доктор сх. наук, профес-		
cop		М.Г. Чабаев
	подпись, дата	(раздел 1 - 6)
Младший научный со-		
трудник		А.А. Зеленченкова
	подпись, дата	(раздел 1-6)
Лаборант		d //
	подпись, дата	Т.С. Жарова
	,, ,,,	(раздел 4)
Напионаципацип		
Нормоконтролер		
Ведущий научный сотруд-		
ник, кандидат биологиче-		
ских наук		А.С. Аникин
	подпись, дата	

РЕФЕРАТ

Отчёт 37 стр., 8 таблиц, 45 источников литературы.

КОРОВЫ, ПРОБИОТИК, УДОЙ, МОЛОКО, БИОХИМИЯ, ЭФФЕКТИВНОСТЬ.

Объектом исследования является пробиотик на основе спорообразующих бактерий производства ООО «Алтбиотех», который возможно применять в составе (в смеси) комбикормов-концентратов для молочных коров.

С целью получения данных об эффективности скармливания пробиотика был проведен научно-хозяйственный опыт на базе СПК «Бурановский» Павловского района Алтайского края, а также в лабораториях Института экспериментальной ветеринарии Сибири и Дальнего Востока, КГБУ «Алтайская краевая ветеринарная лаборатория», на 30 коровах черно-пестрой голштинизированной породы, разделенных по принципу аналогов на три группы: контрольную и две опытные, по 10 голов в каждой. Животные 2-й и 3-й опытных групп получали пробиотик в смеси с концентратами. Было испытано 2 дозировки кормовой пробиотической добавки Энзимспорин — 6,0 и 12,0 г/гол./сут. В результате проведенных комплексных исследований было установлено, что использование пробиотического препарата не способствовало увеличению среднесуточных удоев у подопытных коров.

ОБОЗНАЧЕНИЯ И СОКРАЩЕНИЯ

В настоящем отчете применяют следующие обозначения и сокращения:

А/Г Альбумино-глобулиновое отношение

АЛТ Аланинаминотрансфераза ACB Абсолютно сухое вещество ACT Аспартатаминотрансфераза

БАВ Биологически активные вещества БАД Биологически активная добавка

БАСК Бактерицидная активность сыворотки крови

БЭВ Безазотистые экстрактивные вещества

ВЭ Валовая энергия

ГОСТ Государственный стандарт КК Комбикорм-концентрат

ЛАСК Лизоцимная активность сыворотки крови

МД Массовая доля

НД Нормативная документация

ОВ Общая влага

ОР Основной рацион

ОФР Опсоно-фагоцитарная реакция

ОЭ Обменная энергия

ПЗА Полный зоотехнический анализ

ПП Переваримый протеин C/X Сельскохозяйственный

СВ Сухое вещество

СЖСырой жирСЗСырая зола

СК Сырая клетчатка

СОМО Сухой обезжиренный молочный остаток

СП Сырой протеин

ТУ Технические условия

ФА Фагоцитарная активность

ФИ Фагоцитарный индекс ФЧ Фагоцитарное число

ЭКЕ Энергетическая кормовая единица

СОДЕРЖАНИЕ

1.	Обоснование исследований	6
2.	Цель и задачи исследований	10
3.	Материал и методика исследований	11
4.	Результаты исследований	17
4.1.	Анализ рациона кормления подопытных животных	17
4.2	Молочная продуктивность и качество молока коров в период	
	опыта	20
4.3.	Расчет затрат кормов	22
4.4.	Гематологические показатели крови, иммунитет	22
4.5.	Микрофлора содержимого толстого кишечника	28
4.6.	Экономическая эффективность	29
5.	Выводы	32
6.	Предложения производству	34
	Список использованной литературы	35

1. Обоснование исследований

Одной из важнейших задач агропромышленного комплекса страны является обеспечение населения доступными и высококачественными продуктами питания отечественного производства в необходимом количестве. Применение кормовых добавок способствует повышению продуктивности животных, снижению затрат и кормов на единицу производимой продукции (В.И. Левахин и др., 2005; И.А. Бабичева и др., 2012).

В связи с этим в последние годы все больше внимания уделяется изучению и производству биологически активных кормовых добавок, направленных на стимуляцию неспецифического иммунитета, профилактику и лечение смешанных желудочно-кишечных инфекций и расстройств пищеварения, вызванных нарушением микробиоценоза пищеварительного тракта (Б.В. Тараканов и др., 2000; Н.А. Ушакова и др., 2003; П.А. Красочко, 2009; Н.А. Ушакова и др., 2010; FAO, 2006; М. DeVrese et al., 2008; К.А. Abbas et al., 2009; G.M. Chu et al., 2011).

Пробиотики относятся к числу кормовых добавок, в наибольшей степени отвечающих особенностям пищеварительной системы жвачных животных. В целом — это живая микробная кормовая добавка, которая оказывает полезное действие на животного-хозяина путем улучшения его кишечного микробного баланса (Б.В. Тараканов и др., 2003; G.W. Tannock, 2005; О.Г. Башкиров, 2003; Г.Ю. Лаптев и др., 2004; В.Г. Двалишвили и др., 2008; А.Н. Панин, Н.И. Малик, 2009; Р.В. Некрасов и др., 2010, R.Fuller, 1992).

Действие пробиотических препаратов направлено на улучшение процессов пищеварения, обмена веществ, повышение продуктивности животных, экологической безопасности продуктов и, как следствие, экономических результатов производства. В то же время профилактика болезней с экономической точки зрения более целесообразна, чем лечение (Z. Müller, 1967; А.И. Чернышев, 1986).

Применение пробиотиков связано с решением различных проблем со здоровьем, повышением эффективности пищеварения, стимуляцией роста и развития. Установлено, что применение пробиотиков может оказывать противоинфекционное, иммунномодуляторное воздействие на организм животного, повышать барьерные функции (физиологические механизмы, защищающие организм от воздействия окружающей среды, препятствующие проникновению в него бактерий, вирусов и вредных веществ), стимулировать моторику и экскреторную функции кишечника, регулировать его микробный гомеостаз, выделять бактериоцины (R. Walker, M. Buckley, 2006; M. Vrese et al., 2007; S.K. Mazmanian et al., 2008; J.K. Seo et al., 2010; L. Morelli et al., 2012).

При разработке кормовых пробиотиков, пребиотиков и симбиотиков, следует определять режим их применения: оптимальную дозу включения в рацион, рациональную продолжительность использования, а также эффективность их применения (Р.Р. Гадиев и др., 2008; Т.А. Курзюкова, Н.А. Крамаренко, 2012; А.А. Валитова и др., 2014).

В связи с широко известным положительным влиянием на поддержание микробного баланса кишечника исторически так сложилось, что изначально внимание производителей пробиотических культур было направлено на представителей нормальной микрофлоры — молочнокислые микроорганизмы. Однако в наши дни хорошо известна их чувствительность к высокой температуре при производстве комбикормов. Поэтому при современной технологии животноводства необходимы такие микробиологические добавки, которые не теряют жизнеспособности при кормоприготовлении (Э.И. Коломиец и др., 2009; J. Schrezenmeir et al, 2001; M.S. Kolosovskaya, 2011).

Споры *Bacillus* обладают жизнестойкостью даже при высоких температурах (Н.В. Ананьева и др., 2007; В.И. Байбаков и др., 2007; П.А. Красочко, 2009; С.В. Копыльцов, 2011; Л.В. Устюжанинова и др., 2012; А.Т.Вull, 1984; О.Simon et al., 2001; А. Mortazavian et al., 2007; К. ElZahar et al., 2012).

Широко применяемые микроорганизмы в качестве пробиотиков относятся к роду рода *Bacillus* и представлены *Bacillus subtilis, Bacillus licheniformis*. Данные бактерии не являются элементами нормофлоры в микробных сообществах и животных, но обладают свойствами, которые обеспечивают организму возможность поддерживать состояние микрофлоры на уровне экологически естественного. Они оптимизируют обмен веществ и улучшают снабжение организма биологически активными и строительными веществами, обеспечивают качественное переваривание пищи, оказывают антигистаминное и антитоксическое действие, существенно повышая неспецифическую резистентность организма. Существуют данные подтверждающие положительное действие монобациллярных препаратов на поросятах и телятах (Л.Г. Войчишина, 1991; П.И. Жданов, 1994; Д.А. Девришов, 1996; Л.Ф. Бакулина, 2001).

При попадании бактерий в ЖКТ они живут в нём не более 30 дней, после чего выводятся естественным путём. В желудке бактерии этого вида не погибают, поскольку в споровом виде обладают высокой устойчивостью к воздействию желудочного сока. Во рту, тонком и толстом отделе кишечника они трансформируются в вегетативную форму, размножаются и продуцируют в окружающую среду биологически активные вещества, под воздействием которых подавляется рост и развитие гнилостной, патогенной и условнопатогенной микрофлоры, восстанавливается численность популяций лакто- и бифидобектерий, кишечной палочки и др. микроорганизмов, составляющих нормофлору ЖКТ и обеспечивающих его оптимальное функционирование. Способность подавлять рост и развитие сторонней для ЖКТ микрофлоры бактерии этих видов реализуют преимущественно за счёт способности нарабатывать полиеновые антибиотики – бацитрацины и лихениформины. Подавление реализуется путем прямого антагонизма относительно инфекционных агентов и опосредованно через оптимизацию функционирования иммунитета человека и животных.

В связи с этим испытания различных дозировок спорового пробиотика Энзимспорин интересно как с научной точки зрения, так и представляет практическое значение для условий Алтайского края.

2. Цель и задачи исследований

Цель исследований – провести испытания по определению эффективности использования в кормлении коров различных дозировок пробиотика Энзимспорин на основе спорообразующих бактерий.

Для достижения поставленной цели изучались следующие вопросы:

- анализ рационов кормления подопытных животных;
- молочная продуктивность и качество молока коров;
- биохимические показатели крови подопытных животных;
- показатели неспецифического иммунитета;
- микробиологические показатели содержимого толстого кишечника коров;
- расчет возможного экономического эффекта при скармливании изучаемой пробиотической добавки в рационах дойных коров.

3. Материал и методика исследований

Для реализации поставленных задач на базе СПК «Бурановский» Павловского района Алтайского края, а также в лабораториях Института экспериментальной ветеринарии Сибири и Дальнего Востока (г. Краснообск, Новосибирской области), КГБУ «Алтайская краевая ветеринарная лаборатория» (г. Барнаул Алтайского края) были проведены исследования, включая научно-хозяйственный опыт по следующей схеме:

Таблица 1 - Схема научно-хозяйственного опыта

Группа животных	Количество животных	Характеристика кормления
Ко		ООВЫ
1-контрольная	10	Основной рацион
2-опытная	10	ОР + пробиотик 6,0 г/гол./сут.
3-опытная	10	ОР + пробиотик 12,0 г/гол./сут.

Для научно-хозяйственного опыта были подобраны три группы коров черно-пестрой голштинизированной породы в начале лактации, по 10 голов в каждой. Исследования проведены в период с 16 ноября 2016 года по 20 февраля 2017 года. Продолжительность научно-хозяйственного опыта составила 96 дней. Коровам 1-ой контрольной группы скармливались корма по рациону кормления, принятому в хозяйстве. 2-ая и 3-я опытные группы получали изучаемый пробиотический препарат в смеси с концентратной частью рациона ежедневно в утреннее кормление суточную дозу в количестве 6,0 и 12,0 г/гол. в сутки, соответственно.

Животные контрольной и опытных групп были размещены в одном помещении, где им были созданы одинаковые условия кормления и содержания (А.П. Калашников и др., 2003).

Свойства *Bacillus subtilis* и *Bacillus licheniformis* широко известны и представляют собой взаимодополняющую комбинацию микроорганизмов.

Bacillus subtilis (сенная палочка), благодаря продуцируемым антибиотикам и способности закислять среду обитания, является антагонистом патогенных и условно-патогенных микроорганизмов, таких как сальмонелла, протей, стафилококки, стрептококки, дрожжевые грибки; продуцирует ферменты, удаляющие продукты гнилостного распада тканей, восстанавливается численность популяций лакто- и бифидобактерий, кишечной палочки и других микроорганизмов, составляющих нормофлору желудочно-кишечного тракта (ЖКТ) и обеспечивающих его нормальное функционирование; синтезирует аминокислоты, витамины и иммуноактивные факторы.

Bacillus licheniformis продуцирует ряд биологически активных белков, пептидов, ферментов и витаминов, способствует выработке организмом интерферона, которые уничтожают патогенные микробы и вирусы, приводя к нормализации микрофлоры кишечника, способствуют перевариванию пищи, снимают пищевые и химические отравления, уничтожают поврежденные и раковые клетки (http://agropost.ru/skotovodstvo/kormlenie-krs/vliyanie-bioplyus2b-na-produktivnost-krs.html).

Изучаемый препарат включает следующие штаммы микроорганизмов:

- 1. Bacillus subtilis BKM B-2998D (ВКПМ В-314) является антагонистом патогенных и условно-патогенных микроорганизмов, таких как сальмонелла, протей, стафилококки, стрептококки, дрожжевые грибки; продуцирует ферменты, удаляющие продукты гнилостного распада тканей, восстанавливается численность популяций лакто- и бифидобактерий, кишечной палочки и других микроорганизмов, составляющих нормофлору желудочнокишечного тракта (ЖКТ) и обеспечивающих его нормальное функционирование; синтезирует аминокислоты, витамины и иммуноактивные вещества, обладает повышенной термостабильностью.
- 2. *Bacillus licheniformis* BKM B-2999D (ВКПМ B-8054) продуцирует ряд белков, пептидов, ферментов и витаминов, способствует выработке организмом интерферона, которые уничтожают патогенные микробы и вирусы,

приводя к нормализации микрофлоры кишечника, способствуют перевариванию пищи, снимают пищевые и химические отравления.

3. *Bacillus subtilis* BKM B-3057D (ВКПМ В-12079) является продуцентом антибиотических веществ и дополнительно продуцирует целлобиазу и эндо 1,4 бета-глюконазу, что позволяет расширить спектр антагонистической активности целевого пробиотика.

Для повышения эффективности пробиотического препарата в его состав включен комплекс ферментов, включая ксиланазу, β-глюканазу, целлюлазу, а также вспомогательные вещества – натрий хлористый и лактозу.

Важными свойствами нового пробиотического комплекса являются:

- широкий спектр действия по отношению к патогенным бактериям;
- термостабильность;
- высокое качество при хранении;
- экологическая безопасность;
- удобство в применении (как в составе комбикорма, так и при выпойке молоком, в составе заменителей).

В период научных исследований изучены рационы кормления подопытных животных на соответствие их современным требованиям потребностей в питательных веществах и энергии. Рассчитаны затраты кормов – путем определения расхода кормов на единицу полученной продукции.

Корма для химического анализа отбирали согласно ГОСТ Р ИСО 6497-2011.

Химический состав кормов определен в испытательной лаборатории КГБУ «Алтайская краевая ветеринарная лаборатория» (аттестат аккредитации №RA.RU.21 ПТ41 дата выдачи 10.09.2015 г.): влажность, МД сырого протеина (ГОСТ 13496.4-93), МД сырой клетчатки (ГОСТ 31675-2012), МД сырого жира (ГОСТ 13496.15-97), МД сырой золы (ГОСТ 31675-2012), МД кальция (ГОСТ 26570-95), МД фосфора (ГОСТ 26657-97).

Расчет рационов кормления проводился посредством программного комплекса КормОптимаЭксперт (Версия 2016, ООО «Корморесурс»).

Удой (валовой, среднесуточный) рассчитан на основе проводимых контрольных доек в начале эксперимента и далее ежемесячно от всех подопытных животных (n=10).

Пробы молока для анализа отбирали в соответствии с ГОСТ 26809-86.

Для определения качества молока подопытных животных (n=5) отбирались средние пробы и в испытательной лаборатории КГБУ «Алтайская краевая ветеринарная лаборатория» были определены: МД жира (жиромер, по ГОСТ 5867), МД белка (ФЭК КФК-5М, по ГОСТ 25179), СОМО (весы электронные DL200, по ГОСТ Р 54761), содержание соматических клеток (вискозиметр «Соматос-В», по ГОСТ Р 54077).

В конце 1 этапа эксперимента произведен забор крови от животных (n=3) из каждой подопытной группы для определения биохимических (общий белок, альбумины, глобулины, креатинин, мочевина, билирубин общий, холестерин общий, кальций, фосфор, щелочная фосфотаза, глюкоза, АСТ, АЛТ) и морфологических (гемоглобин, эритроциты, лимфоциты, гематокрит) показателей крови. Анализы крови в испытательной лаборатории КГБУ «Алтайская краевая ветеринарная лаборатория» проводились следующим образом: общий белок - рефрактометрическим методом (МУ Утв. от 29.06.1981 г.), белковые фракции - нефелометрическим методом (ФЭК КФК-2, МУ Утв.от 29.06.1981 г.), кальций - комплексометрическим методом (МУ Утв.от 29.06.1981 г.), фосфор - С Ванадат-молибдатным реактивом (МУ Утв.от 29.06.1981 г.), щелочная фосфатаза, креатинин, мочевина, билирубин общий, холестерин – на биохимическом фотометре Стат Факс 1904 Плюс, набор реагентов для клинической биохимии, глюкоза - метод по Самоджи, тестполоски БЕТАЧЕК для визуального контроля определения уровня глюкозы крови, гемоглобин - гемоглобин-цианидным методом, подсчёт количества эритроцитов, лейкоцитов, выведение лейкоцитарной формулы - микроскопом Микромед - 2.

В испытательной лаборатории Института экспериментальной ветеринарии Сибири исследование морфологических и биохимических показателей

крови проводилось на автоматическом анализаторе Vet Auto Hematology Analyzer «BC-2800» (Mindray, KHP), биохимических показателей сыворотки крови - на полуавтоматическом анализаторе «CHEM-7» (Erba Diagnostics Mannheim, Германия). Эритроциты и лейкоциты – импедансным методом, гемоглобин – колориметрическим, АСТ и АЛТ – кинетическим УФ-методом.

Также в конце 1 этапа опыта произведен забор крови для определения уровня неспецифического иммунитета крови подопытных животных (n=3) в лаборатории Института экспериментальной ветеринарии Сибири с определением лизоцимной и бактерицидной активности сыворотки крови (ЛАСК и БАСК), а также опсоно-фагоцитарной реакции (ОФР) по общепринятым методикам. Определение фагоцитарной активности лейкоцитов - подсчетом количества фагоцитирующих нейтрофилов, бактерицидной активности — по методике О.В. Смирновой и Т.А. Кузьминой (1966), лизоцимной активности — по И.Ф. Храбустовскому и соавт. (1979).

В конце 1 этапа эксперимента произведен забор содержимого толстого кишечника от животных (n=3) подопытных групп с определением в лаборатории Института экспериментальной ветеринарии Сибири содержания бифидо- и лактобактерий методом последовательных разведений с последующей фиксацией роста бактерий и подсчетом количества выросших колоний. В качестве питательных сред для роста бифидобактерий использована «Бифидумсреда» (производство ФБУН НЦП Микробиологии и биотехнологии), лактобактерий — «Лактобакагар» (производство ФБУН НЦП Микробиологии и биотехнологии).

Исходя из анализа рациона кормления, стоимости кормов и полученного удоя за период опыта рассчитан возможный экономический эффект от использования изучаемого пробиотического препарата в кормлении дойных коров в начале лактации.

Полученные в опыте материалы обработаны биометрически с использованием t-критерия Стьюдента. При этом вычислены следующие величины: среднеарифметическая (М), среднеквадратическая ошибка (±m) и

уровень значимости (р). Результаты исследований считали высокодостоверными при р<0,001 и достоверными при р<0,01 и р<0,05. При р<0,1, но р>0,05 - тенденция к достоверности полученных данных. При р>0,1 разницу считали недостоверной

4. Результаты исследований

4.1. Анализ рациона кормления подопытных животных

Как было указано ранее, животные контрольной и опытных групп находились в одинаковых условиях содержания. Кормление их осуществлялось по распорядку дня, принятому в хозяйстве.

При проведении научно-хозяйственного опыта животные всех трех групп получали хозяйственный рацион, состоящий из сена, соломы, силоса, концентратов.

Рационы кормления животных составлены в соответствии с их живой массой и продуктивностью (табл.2).

Таблица 2 – Кормовые рационы подопытных коров

IC ()		Группа		
Корма (кг) и показатели	1-контрольная	2-опытная	3-опытная	% в СВ
Зерносмесь	8,000	8,000	8,000	
Силос кукурузный	25,000	25,000	25,000	
Сено (костер, эспарц.)	4,000	4,000	4,000	
Солома пшеничная	2,000	2,000	2,000	
Патока	0,500	0,500	0,500	
Соль поваренная	0,06	0,06	0,06	
Пробиотик	-	+	++	
В раци	оне содержится	I.		
обменной энергии, МДж	174,1	174,1	174,1	10,1
сухого вещества, кг	17,24	17,24	17,24	-
сырого протеина, г	1864	1864	1864	10,8
переваримого протеина, г	1292	1292	1292	7,5
сырого жира, г	231	231	231	1,3
сырой клетчатки, г	4071	4071	4071	23,6
БЭВ, г	10540	10540	10540	61,1
крахмала, г	4758	4758	4758	27,6
сахара, г	876	876	876	5,1

If any of the second	Группа		0/ CD	
Корма (кг) и показатели	1-контрольная	2-опытная	3-опытная	% в СВ
кальция, г	61	61	61	0,4
фосфора, г	24	24	24	0,1
Мg, г	24	24	24	0,1
S, Γ	27	27	27	0,2
К, г	201	201	201	1,2
Na, г	28	28	28	0,2
Cl, Γ	57	57	57	0,3
NaCl, г	95	95	95	0,6
каротина, мг/кг	390	390	390	-
витамина D, тыс. МЕ/кг	3	3	3	-
витамина Е, мг/кг	1502	1502	1502	-
Fe, мг/кг	4701	4701	4701	-
Си, мг/кг	101	101	101	-
Zn, мг/кг	415	415	415	-
Mn, мг/кг	864	864	864	-
Со, мг/кг	2	2	2	-
I, мг/кг	5	5	5	-

^{+ - 6} г/гол./сут., ++ - 12 г/гол./сут.

В современном молочном скотоводстве о полноценности кормления коров судят не только по абсолютному содержанию энергии, питательных и минеральных веществ в рационах коров, но и по их концентрации в сухом веществе.

По рекомендациям ученых ВИЖа концентрация обменной энергии (КОЭ) в сухом веществе рациона для высокопродуктивных коров должна составлять не менее 10,2 МДж/кг (а при уровне продуктивности свыше 6000 кг

молока за лактацию не менее 10,8 МДж ОЭ), в нашем опыте этот показатель полноценности кормления был ниже нормы и составлял 10,1 МДж.

Известно также, что молочная продуктивность во многом зависит от количества и качества протеина в рационе. Для коров с живой массой 550 – 650 кг и продуктивностью 25 кг молока в сутки концентрация сырого протеина в сухом веществе рациона должна находиться в пределах 13,4 – 14,4%(а при уровне продуктивности свыше 6000 кг молока за лактацию не менее 16%). В наших исследованиях концентрация сырого протеина в сухом веществе рациона составляла всего 10,8%.

Другим показателем, характеризующим полноценность протеинового питания коров, является концентрация переваримого протеина на 1 ЭКЕ. Для высокопродуктивных коров этот показатель должен превышать 91-95 г. В нашем опыте содержание переваримого протеина на 1 ЭКЕ составило 74,2 г, что значительно ниже нормы.

Оптимальное количество жира в рационах коров с продуктивностью 20 – 25 кг молока в сутки должно составлять 30-32 г на 1 кормовую единицу. В нашем опыте этот показатель был ниже рекомендуемой нормы и составлял 13,3 г на кормовую единицу.

Легкопереваримые углеводы имеют большое значение в регулировании обмена веществ и энергии в организме. Многие ученые считают, что их недостаток в рационе приводит к нарушениям углеводно-жирового обмена, ацидозу, накоплению кетоновых тел, снижению щелочного резерва крови (А.П. Калашников, В.И. Фисинин и др., 2003). Эти исследователи рекомендуют при кормлении лактирующих коров с удоем 4000 кг молока в год и ниже составлять рацион, так, чтобы сахаро-протеиновое отношение равнялось 0,8-1,2, а при кормлении коров с годовым удоем 5000-6000 кг молока и выше — 1,2-1,5. В приведенном рационе сахаропротеиновое отношение составило 0,47 ед.

Одним из показателей, влияющих на эффективность использования энергии, служит уровень клетчатки в кормовом рационе. По данным А.П.

Калашникова, В.И. Фисинина и др. (2003) клетчатка в оптимальных количествах (15-22%) от сухого вещества рациона необходима молочному скоту для течения нормальных физиологических процессов в рубце. В опыте, проведенном на лактирующих коровах, содержание сырой клетчатки в процентах от сухого вещества составило 23,6%, то есть превышало норму.

В питании высокопродуктивных лактирующих коров значение кальция и фосфора чрезвычайно велико. Они участвуют во всех процессах обмена веществ, происходящих в организме. По данным А.П. Калашникова, В.И. Фисинина и др. (2003) при годовом удое 7000-8000 кг молока и живой массе коров 500 – 600 кг содержания кальция и фосфора должно быть соответственно 127-127,3 и 104,8-105,1г, тогда как в анализируемом рационе содержится 61 г кальция и 24 г фосфора.

Таким образом, необходимо отметить, в кормовых рационах лактирующих коров живой массой 500-650 кг с удоем 20-25 кг молока всех трех групп в целом оптимальное количество сухого вещества при значительно низкой концентрации в нем энергии и протеина, при повышении уровня клетчатки, что уступает требованиям современных детализированных норм кормления для высокопродуктивных животных в период раздоя. Такое положение может приводить к снижению переваримости и усвояемости питательных веществ кормов и значительному недополучению продукции, снижению уровня раздоя. Это необходимо учесть при интерпретации полученных в наших исследованиях данных.

4.2. Молочная продуктивность и качество молока коров в период опыта

Одним из основных критериев в молочном скотоводстве, способствующих оценить сбалансированность рационов кормления, а также продуктивное действие изучаемого кормового пробиотика, является молочная продуктивность коров. По результатам ежедекадных контрольных доек была опре-

делена молочная продуктивность подопытных коров за период проведения научно-хозяйственного опыта представленная в таблице 3.

Таблица 3- Молочная продуктивность подопытных животных, качество молока ($n=10, M\pm m$)

Показатель	Группа		
Показатель	1 - контрольная	2 - опытная	3 - опытная
Дней опыта	96	96	96
Среднесуточный удой			
молока натуральной жир-	17,54±0,69	$17,55\pm0,59$	17,37±0,76
ности, кг			
Валовой удой за период	1684,11±66,02	1685,07±56,42	1667,66±73,13
опыта, кг	1004,11±00,02	1005,07±50,42	1007,00±73,13
Содержание % жира	3,99	3,85	3,84
Валовой удой 3,4%-го			
молока за период опыта,	1976,75	1906,02	1883,57
КГ			
Среднесуточный удой			
молока 3,4%-й жирности,	20,59	19,85	19,62
КΓ			
% к контролю	100,00	96,42	95,29
Продукция молочного	67,20	64,88	64,04
жира за период опыта, кг	07,20	01,00	01,01

Как видно из данных таблицы 3, среднесуточный удой у коров контрольной и опытных групп, получавших различные дозировки кормового пробиотика (6 и 12 г/гол. в сутки), составил соответственно 17,54, 17,55, 17,37 кг натурального молока. В переводе на 3,4-х процентное молоко коровы 2-ой и 3-ей опытных групп имели среднесуточный удой на 0,74 и 0,97 кг или на 3,58 и 4,71% ниже по сравнению с 1-ой контрольной группой. Также в данных опытных группах, в среднем процентное содержание жира отмечается ниже контроля на 0,14 и 0,15% соответственно.

Таким образом, применение пробиотика в рационах коров на базе СПК «Бурановский» Павловского района Алтайского края не способствовало повышению продуктивности животных в период проводимых испытаний.

4.3. Расчет затрат кормов

Одним из основных показателей, характеризующих эффективность отрасли животноводства являются затраты кормов на единицу продукции (табл.4).

Таблица 4— Затраты питательных веществ и энергии на 1кг молока 3,4-%-ной жирности (в среднем на голову)

Показатель	Группа		
HURASATCH	1-контрольная	2-опытная	3-опытная
Обменной энергии, ЭКЕ	0,85	0,88	0,89
сухого вещества, г	837,30	868,51	878,70
переваримого протеина, г	62,75	65,09	65,85

Расчет затрат посредством наложения имеющегося фактического рациона кормления на полученную продукцию, показал, что включение в рационы лактирующих коров 2-ой и 3-ей-опытных групп пробиотического препарата в количестве 6 и 12 г/гол. в сутки, не приводило к снижению затрат энергетических кормовых единиц, сухого вещества, переваримого протеина, и данные показатели были выше на 3,53-4,71%; 3,73-4,95%; 3,73-4,94% по сравнению с животными контрольной группы.

Таким образом, включение в рацион высокопродуктивных молочных коров разных уровней пробиотического препарата не способствовало сокращению затрат питательных веществ на производство 1 кг молока 3,4% жирности.

4.4. Гематологические показатели крови, иммунитет

Отражением обмена веществ является внутренняя среда организма. Кровь осуществляет стабилизацию (гомеостаз) внутренней среды, что необ-

ходимо для жизнедеятельности клеток и тканей, обеспечивает функциональное единство организма (В.И. Георгиевский, 1990).

Несмотря на непрерывное поступление в кровь и выделение из нее различных веществ, химический состав крови в норме довольно постоянен. Исследование биохимических и гематологических показателей крови позволяет выявить действие вводимого препарата на внутреннюю среду организма.

В связи с этим нами были определены некоторые биохимические и морфологические показатели, а также факторы естественной резистентности животных в сравнении с контролем.

Анализируя результаты биохимических исследований необходимо отметить, что все полученные показатели находились в пределах физиологической нормы, что свидетельствует о том, что эксперимент был проведен на клинически здоровых животных (табл. 5).

Таблица 5 -Биохимические и морфологические показатели крови подопытных животных в конце эксперимента (М±m, n=3)

П	Группа		
Показатель	1-контрольная	2-опытная	3-опытная
Белок общий, г/л	73,81±1,30	77,75±2,23	79,19±0,80*
Альбумины, г/л	31,41±0,96	29,38±0,66	30,62±1,24
Глобулины, г/л	42,40±0,98	48,37±2,88	48,57±1,59*
А/Г коэффициент	0,74±0,03	0,61±0,05	$0,63\pm0,05$
Мочевина, ммоль/л	5,37±0,86	6,22±0,34	5,83±0,65
Креатинин, мкмоль/л	121,11±11,52	112,77±1,02	113,81±10,91
Билирубин общий,	9,24±1,74	12,06±2,12	14,21±1,07
мкмоль/л	7,2741,77	12,00-2,12	14,2121,07
Щелочная фосфатаза,	100,67±5,93	103,13±6,61	114,05±6,16
Ед/л	100,07=3,73	105,15±0,01	114,03±0,10
Холестерин общий,	3,32±0,59	4,25±0,65	4,52±0,31
ммоль/л	3,32±0,37	4,23±0,03	7,32±0,31
Глюкоза, ммоль/л	2,48±0,18	$3,48\pm0,46$	3,23±0,47
Кальций, ммоль/л	2,32±0,12	$2,54\pm0,15$	2,60±0,19
Фосфор, ммоль/л	1,48±0,07	2,03±0,21	1,55±0,22

Показатель	Группа		
Показатель	1-контрольная	2-опытная	3-опытная
Са/Р отношение	2,02±0,06	1,64±0,11	2,32±0,56
Лейкоциты, $10^9/л$	13,27±4,14	$8,43\pm2,35$	13,27±4,15
Эритроциты, $10^{12}/\pi$	6,08±0,55	7,02±0,34	6,35±0,52
Тромбоциты, $10^9/л$	222,00±115,86	273,33±91,40	317,67±52,42
Гемоглобин, г/л	85,67±7,86	90,33±2,91	83,00±3,51
Гематокрит, %	25,67±1,95	27,83±0,96	25,83±0,57
Гранулоциты, %	41,00±4,36	37,00±10,02	42,00±10,15
Моноциты, %	14,00±0,58	13,33±0,88	15,00±1,15
Лимфоциты, %	44,67±4,91	49,67±9,60	42,67±10,17

Достоверно при *- р<0,05.

При определении показателей, характеризующих белковый обмен в организме животных, в конце опыта нами установлено повышение концентрации в сыворотке крови 2-ой и 3-ей опытных групп животных общего белка на 3,94 и 5,38 г/л соответственно по сравнению с 1-ой контрольной группой.

В настоящее время на основании многочисленных исследований установлено, что белковый индекс весьма объективно отражает степень использования азота в организме животных и чем выше этот показатель, тем эффективнее протекает белковый обмен, который в свою очередь оказывает влияние на обмен веществ в целом. В наших опытах белковый индекс сыворотки крови у подопытных коров опытных групп был ниже на 0,13 и 0,11 ед., хотя эти данные были недостоверными по отношению к контрольной группе коров.

В крови лактирующих коров 2-ой и 3-ей опытных групп, получавших разный уровень пробиотического препарата, отмечена незначительная тенденция к увеличению уровня мочевины на 0,85 и 0,46 ммоль/л, что могло быть обусловлено более высокими биосинтетическими процессами в рубце лактирующих коров.

Креатинин, как и мочевина, - продукт обмена белков, содержание которого зависит как от уровня белка, так и от интенсивности обмена, в синтезе которого принимают участие аминокислоты метионин, глицин и аргинин.

В крови животных 2-ой и 3-ей опытных групп, также отмечено увеличение концентрации общего билирубина на 30,52 и 532,78% по сравнению с контрольными животными.

Уровень глюкозы в крови является одним из важнейших параметров, характеризующих углеводный обмен, являясь источником энергии во всех жизненно важных процессах, происходящих в организме. В наших исследованиях в крови лактирующих коров 2-ой и 3-ей опытных групп уровень глюкозы был выше на 1,0 и 0,75 ммоль/л по сравнению с 1-ой контрольной группой.

Содержание уровня холестерина в крови взаимосвязано воспроизводительной способностью и молочной продуктивностью коров. На уровень холестерина влияет состояние здоровья, количество прошедших родов и уровень молочной продуктивности. У животных с высоким уровнем холестерина наблюдается уменьшение длительности интервала от родов до оплодотворения и успешное развитие беременности.

По содержанию уровня общего холестерина в первые два месяца после отела можно оценить степень адаптации организма коров к лактационной нагрузке. Высокий уровень содержания холестерина приходится на пик лактации (до 10,0 ммоль/л). К концу лактации содержание липидов снижается (до 4,3 ммоль/л), так как идет синтез половых гормонов и интенсивный рост плода (uvdc.ru/). В наших исследованиях наименьшая концентрация холестерина была отмечена в крови коров 1-ой контрольной группы— 3,32 ммоль/л.

Холестерин участвует в процессе обновлении молочной железы, в результате происходит увеличение железистой ткани в вымени после отела. Пониженное содержание холестерина в сыворотке крови свидетельствует о больших энергетических затратах животных во время отела и неполного восстановления организма, что связано с нарушением липидного обмена.

Щелочная фосфатаза катализирует гидролиз моноэфиров ортофосфорной кислоты и является маркерным ферментом, отражающим состояние минерального и в частности кальциево-фосфорного обмена.

У животных 2-ой и 3-ей опытных групп, концентрация в крови щелочной фосфатазы была выше на 2,46 и 13,38 Ед/л по сравнению с 1-ой контрольной группой животных.

При изучении показателей минерального обмена было установлено, что содержание кальция и фосфора в сыворотке крови коров всех трех групп находилось в пределах физиологической нормы и было практически одинаковым.

Из морфологических показателей в цельной крови животного чаще всего определяют эритроциты, лейкоциты, гемоглобин и др.

Физиологическое значение данных элементов крови очень большое. Основную часть плотного остатка крови составляют эритроциты, синтез которых осуществляется в красном костном мозге. В крови млекопитающих число эритроцитов в норме составляет 5-9 х 10^{12} /л. В наших исследованиях содержание эритроцитов соответствовало физиологической норме для лактирующих коров. Важнейшая функция эритроцитов состоит в транспортировке кислорода из легких в ткани и углекислоты в обратном направлении. При этом первостепенная роль принадлежит гемоглобину как уникальному транспортному белку. Гемоглобина содержалось в крови коров контрольной группы коров 85,67 г/л, а в крови животных 2-ой и 3-ей опытных групп 90,33и 83,00 г/л, то есть в крови животных 2-ой опытной группы содержание гемоглобина было выше контроля на 4,66 г/л. Насыщенность эритроцитов гемоглобином свидетельствует о повышении окислительно-восстановительных процессов в тканях организма коров, получавших разный уровень пробиотика. Эритроциты пассивно адсорбируют большое количество антигенов, попадающих в организм, таких как бактериальные полисахариды, пенициллин и др. Этим в определенной степени предотвращается массивное поступление антигенов в органы иммуногенеза. Следовательно, эритроциты являются своеобразной буферной системой, регулирующей активность иммунного ответа.

Лейкоциты в организме животного выполняют защитную функцию, то есть формируют в организме клеточный иммунитет, а по отдельным форменным элементам можно судить об остром и хроническом течении инфекционного процесса, паразитарном характере поражения организма-хозяина и характеризовать многие другие физиологические процессы. Лейкоциты свободно мигрируют из сосудов в ткани, выявляя и уничтожая в них чужеродные белоксодержащие образования (вирусы, бактерии и др.), а также поврежденные клетки собственных тканей.

Уровень лейкоцитов был практически одинаковым в крови животных всех трех групп и соответствовал физиологической норме для лактирующих коров.

Таким образом, биохимические и гематологические показатели крови коров опытных групп, получавших разное количество пробиотического препарата, свидетельствуют в целом о некотором улучшении анаболических процессов в их организме, что нашло своё подтверждение в повышении молочной продуктивности коров в опытных группах, но так как период скармливания пробиотика продолжался всего 20 дней, необходимо продолжить исследования с изучением биохимических показателей в конце более длительного периода скармливания.

Состояние естественной резистентности организма наиболее полно характеризует бактерицидная активность сыворотки крови, которая заключается в способности подавлять рост микроорганизмов и зависит от активности всех гуморальных факторов неспецифической устойчивости.

Показатели естественной резистентности организма исследуется путем комплексной оценки также фагоцитарной активности микрофагов в периферической крови по таким показателям, как фагоцитарная активность (ФА), фагоцитарное число (ФЧ) и фагоцитарный индекс (ФИ).

Таблица 6 - Показатели неспецифической резистентности крови подопытных коров (M±m, n=3)

П	Группа		
Показатель	1- контрольная	2-опытная	3-опытная
ЛАСК, %	18,78±1,35	25,76±1,55*	26,75±2,43
БАСК, %	41,33±0,99	42,32±5,81	44,02±6,31
ФА, %	25,33±0,67	26,67±0,67	27,33±0,67
ФИ, %	4,17±1,33	4,27±0,29	4,03±0,72
ФЧ, м.т.	0,89±0,16	$0,99\pm0,17$	1,42±0,23

В целом применение пробиотического препарата в рационах коров в период раздоя обеспечило повышение лизоцимной, бактерицидной активности соответственно на 6,98-7,97 и 0,99-2,69 при практически равноценном уровне фагоцитарной активности крови.

4.5. Микрофлора содержимого толстого кишечника

Важнейшим фактором, влияющим как на рост, так и на здоровье животного, является состояние микробиоценоза кишечника.

Кишечник - это самая большая иммунная система организма. Около 70% иммунных клеток организма расположены в ЖКТ. Слизистый барьер помогает блокировать наиболее патогенные бактерии от вторжения в организм, оставаясь при этом проницаемым для питательных веществ. Так как некоторые антигенные вещества могут проникать сквозь этот барьер, защитные механизмы хозяина должны работать оптимально, чтобы справиться с множеством чужеродных веществ и патогенов, для которых слизистая оболочка постоянно открыта.

Роль нормальной микрофлоры кишечника заключается в поддержании механизмов естественной резистентности за счет конкуренции с патогенами за рецепторы слизистой оболочки кишечника на стадии их первичной адгезии и колонизации. Под влиянием эуфлоры происходит активация системы

комплемента и фагоцитоза, усиление выработки IgM и секреторного IgA, что играет важную роль в санации организма от возбудителей кишечной инфекции.

Основу облигатной кишечной флоры составляют бактерии рода лактобациллюс (15%), бифидумбактерии (12%).

Таблица 7 - Микробиологические показатели кала подопытных животных (n=3, M±m)

Группа	Микроор	ганизмы
Группа	Бифидобактерии	Лактобактерии
1-контрольная	4,0x10 ¹⁰	1,70x10 ⁷
2-опытная	6,70x10 ¹⁰	8,07x10 ⁶
3-опытная	$3,70x10^{10}$	1,47x10 ⁷

Анализ полученных данных свидетельствует о том, что микробиологический уровень содержимого толстого кишечника у всех испытуемых животных находился практически на одном уровне.

У лактирующих коров 2-ой опытной группы количество бифидобактерий в содержимом толстого кишечника повысилось по сравнению с контрольной группой в 1,67 раза по сравнению с контролем. Содержание лактобактерий в содержимом кишечника лактирующих коров было на уровне контроля. Необходимо продолжить исследования для изучения влияния скармливаемого пробиотика на микробиоценоз кишечника животных.

4.5. Экономическая эффективность

На основании расчетных данных по расходу кормов и фактического валового удоя молока подопытных животных, а также материалов бухгалтерского учета на период проведения опыта, был рассчитан возможный экономический эффект от использования разных дозировок изучаемого пробиотического препарата в кормлении коров в период раздоя.

Расчет экономической эффективности использования пробиотика в научно-хозяйственном опыте на коровах (в расчете на 1 голову) представлен в таблице 8.

Таблица 8 - Экономическая эффективность использования пробиотика в научно-хозяйственном опыте на коровах (в расчете на 1 голову)

Показатель	Группа		
	1-контролная	2-опытная	3-опытная
Получено молока 3,4-%-ной жирно-	1976,75	1906,02	1883,57
СТИ	,	,	,
Цена реализации 1 кг молока 3,4-%-	22,00	22,00	22,00
ной жирности, руб.	22,00	22,00	22,00
Сумма реализации молока, руб.	43488,50	41932,44	41438,54
Стоимость кормов рациона за период опыта, руб.	5568,00	5568,00	5568,00
Стоимость дополнительно скармли-			
ваемого пробиотического препарата,	-	432,00	864,00
руб.		,	,
Стоимость рациона с пробиотиком,	5568,00	6000,00	6432,00
руб.			ŕ
Дополнительный надой молока, кг	-	(-)70,73	(-)93,18
Стоимость дополнительно получен-		(-)1556,06	(-)2049,96
ного молока, руб.	_	(-)1330,00	(-)2047,70
Превышение стоимости полученно-			
го молока над стоимостью кормов,	37920,50	35932,44	35006,54
руб.			
Дополнительная прибыль за период		()1000 06	()2012 06
опыта, руб.	-	(-)1988,06	(-)2913,96
Дополнительная прибыль, руб./сут.	-	(-)20,71	(-)30,35

Анализируя данные таблицы 8, необходимо отметить, что стоимость кормов во всех трех группах дойных коров за весь период опыта составила 5568,00 рублей.

Кроме того, были расходы, направленные на приобретение пробиотического препарата, что увеличило расходы на корма на 432,00 и 864,00 руб. за период опыта во 2-ой и 3-ей опытных группах коров. Однако от коров опытных групп за период эксперимента получено на (-)70,73 и (-)93,18 кг

меньше молока 3,4%-ной жирности, чем от животных контрольной группы. Следовательно, и дополнительная прибыль от реализации молока была ниже. Она оказалась ниже контроля на (-)1988,06 и (-)2913,96 руб. на голову в день в период проведения опыта.

5. Выводы

- **5.1.** Скармливание изучаемого пробиотика в количестве 6 и 12 г/голову в сутки коровам СПК «Бурановский» Павловского района Алтайского края не обеспечило увеличение среднесуточных удоев молока.
- **5.2.** Включение в рационы лактирующих коров 2-ой и 3-ей-опытных групп разного уровня пробиотического препарата не приводило к снижению затрат энергетических кормовых единиц, сухого вещества, переваримого протеина, и данные показатели были выше на 3,53-4,71%; 3,73-4,95%; 3,73-4,94% по сравнению с животными контрольной группы.
- **5.3.** В крови лактирующих коров 2-ой и 3-ей опытных групп, получавших разный уровень пробиотического препарата, отмечена тенденция к повышению уровня общего белка на 3,94 и 5,38 г/л при снижении белкового индекса на 0,13 и 0,11 ед. Отмечена незначительная тенденция к увеличению уровня мочевины на 0,85 и 0,46 ммоль/л, что могло быть обусловлено более высокими биосинтетическими процессами в рубце лактирующих коров. Необходимо продолжить исследования с изучением биохимических показателей.
- **5.4**. В целом применение пробиотического препарата в рационах коров в период раздоя обеспечило повышение лизоцимной, бактерицидной активности соответственно на 6,98-7,97 и 0,99-2,69 при практически равноценном уровне фагоцитарной активности крови.
- **5.5.** У лактирующих коров 2-ой опытной группы количество бифидобактерий в содержимом толстого кишечника повысилось по сравнению с контрольной группой в 1,67 раза по сравнению с контролем. Содержание лактобактерий в содержимом кишечника лактирующих коров было на уровне контроля. Необходимо продолжить исследования для изучения влияния скармливаемого пробиотика на микробиоценоз кишечника животных.
- **5.6.** От коров опытных групп за период эксперимента получено на (-) 70,73 и (-) 93,18 кг меньше молока 3,4%-ной жирности, чем от животных

контрольной группы. Следовательно, и дополнительная прибыль от реализации молока была ниже. Она оказалась ниже контроля на (-) 1988,06 и (-) 2913,96 руб. за период проведения опыта.

6. Предложения производству

Рекомендуем СПК «Бурановский» Павловского района Алтайского края для рентабельного ведения молочного скотоводства укреплять кормовую базу.

Рекомендуем на базе СПК «Бурановский» Павловского района Алтайского края продолжить исследования по изучению эффективности пробиотического препарата в кормлении дойных коров и телят.

Крупным специализированным и фермерским хозяйствам Алтайского края использовать в кормлении дойных коров пробиотический препарат, содержащие комплекс спорообразующих бактерий *Bacillus subtilis* и *Bacillus licheniformis* для повышения молочной продуктивности животных при экономической целесообразности использования.

Список использованной литературы

- 1. Abbas K.A. The synergistic effects of probiotic microorganisms on the microbial production of butyrate in vitro / K.A. Abbas, D.L. Clemans // McNair Scholas Research Journal: Vol. 2: Iss. 1, Article 8.
- 2. Chu G.M. Efficacy of probiotics from anaerobic microflora with prebiotics on growth performance and noxious gas emission in growing pigs / G.M. Chu, S.J. Lee, H.S. Jeong, S.S. Lee // Animal Science Journal. 2011. Vol. 82 (2): 282-290.
- 3. FullerRay (Ed.) Probiotics. The scientific basis. Chapman & Hall. London. N.Y. To-kyo. —1992. —397 p.
- 4. Kolosovskaya M.S. Sorulating bacteria of genus *Bacillus* as a basis of novel veterinary probiotic // 4th Congress of European Microbiologists, Geneva, Switzerland, 26-30 June 2011.
- 5. Mazmanian S.K., Round J.L., Kaspe, D., 2008. A microbial symbiosis factor prevents inflammatory disease. Nature, 453, 620-625.
- 6. Morelli L, Capurso L., 2012.- FAO/WHO guidelines on probiotics: 10 years later. J ClinGastroenterol, 46 (suppl):1-2.
- 7. Müller, Z. Antibiotic ve antibodies ageist bacterial polysaccharides by leucocytes, $1967. V. 12. N_{\odot} 6. P. 562.$
- 8. Schrezenmeir J. Probiotics, prebiotics, and symbiotics approaching a definition / J. Schrezenmeir, M. De Vrese // Am .J. Clin. Nutr. 2001. 73 (suppl): P. 4-361.
- 9. Tannock, G.W. Probiotics and prebiotics: scientific aspects, Ed. Caister-AcademicPress, Wymondham, UK, 2005. 230 pp
- 10. Walker R., Buckley M., 2006. Probiotic microbes: the scientific basis / A report from the American Academy of Microbiology, 22p.
- 11. Ананьева, Н.В. Влияние экзополисахаридов на стрессоустойчивость пробиотических культур / Н.В. Ананьева, В.И. Ганина // Материалы Международного конгресса «Пробиотики, пребиотики, синбиотики и функциональные продукты питания. Фундаментальные и клинические аспекты» (Санкт-Петербург, 15-16 мая 2007 года). 2007. С. 20.
- 12. Бабичева, И.А. Эффетивность применения пробиотического препарата в повышении продуктивности бычков симментальской породы / И.А. Бабичева,В.Н. Никулин, Е.А. Ажмулдинов // Известия Оренбургского государственного аграрного университета. -2012. -№1 (33). С. 119-122.
- 13. Байбаков, В.И. Новый кислотоустойчивый штамм *В. Віfіdum 791* БАГ как основа БАД и заквасок / В.И. Байбаков, А.В. Молокеев, Т.Л. Карих // Материалы Международного конгресса «Пробиотики, пребиотики, синбиотики и функциональные продукты питания. Фундаментальные и клинические аспекты» (Санкт-Петербург, 15-16 мая 2007 года). 2007. С. 21.
- 14. Валитова, А.А. Эффективность использования пробиотической добавки «Ветоспорин-актив» при производстве молока / А.А. Валитова, И.В. Миронова, М.М. Исламова // Вестник Башкирского государственного аграрного университета. 2014. №1 (29). С. 45-50.
- 15. Войчишина, Л.Г. Применение спорообразующих бактерий в лечении больных дисбактериозом / Л.Г. Войчишина, В.Я. Чаплинский, В.А. Вьюницкая // Врачебное дело. 1991.- № 6.- C.73-75.
- 16. Гадиев, Р.Р. Использование нетрадиционных кормов и добавок в птицеводстве / Р.Р. Гадиев, Р.С. Юсупов, Д.Д. Хазиев.— М.: Лань. 2008. 204 с.
- 17. Георгиевский, В.И. Физиология сельскохозяйственных животных.- Москва.- ВО «Агропромидат».-1990.-299 с.
- 18. Двалишвили, В.Г. Целлобактрин–Т в рационах молодняка крупного рогатого скота /В.Г. Двалишвили, В.В. Пузанова, Я.Я. Киндсфатер// Зоотехния.-2008.-№7.- С.9-10.

- 19. Девришов, Д.А. Биоспорин как терапевтическое средство против желудочно-кишечных заболеваний поросят / Д.А. Девришов, Г.Н. Печникова, З.М. Бедоева // Новое в диагностике, лечении и профилактике болезней животных: Межвуз. сб. науч. тр.-М.: МГАВМиБ, 1996. С. 15–19.
- 20. Жданов, П.И. Применение споробактеринажидкого поросятам / П.И. Жданов // Ветеринария.-1994.- N = 7.-C.41-44.
- 21. Казарцев, В.В. Унифицированная система биохимического контроля за состоянием обмена веществ коров / В.В. Казарцев, А.Н. Ратошный // Зоотехния. Вып.3, 1986 г. С.323-330.
- 22. Коломиец, Э.И. Разработка пробиотических препаратов наружного и внутреннего применения на основе бактерий *Bacillussubtilis* // Микробные биотехнологии: фундаментальные и прикладные аспекты: сб. науч. тр. Минск: Беларус. навука, 2009. Т.2. С. 231-243.
- 23. Котарев, В.И. Активность ферментов сыворотки крови и естественная резистентность баранов разных генотипов в зависимости от сезона года / В.И. Котарев, Е.А. Дуванова // Овцы, козы, шерстяное дело.- 2008.- N 4.- C. 24-26.
- 24. Красочко, П.А. Биотехнологические основы конструирования и использования иммунобиологических препаратов для молодняка крупного рогатого скота. Автореферат диссертации на соискание ученой степени доктора биологических наук: 03.03.23 биотехнология. Щелково. 2009. 65 с.
- 25. Курзюкова, Т.А. Влияние дрожжевого пробиотика «Левиселл SC» на химический состав и физические свойства молока коров / Т.А. Курзюкова, Н.А. Крамаренко // Вестник Крас Γ АУ. 2012. N9. С. 136-139.
- 26. Левахин, В.И. Интенсивность роста бычков при использовании в рационах пробиотика / В.И. Левахин, В.И. Швиндт, А.С. Коровин и др. // Вестник мясного скотоводства. Оренбург. 2005. Вып. 58. Т. II. С. 254256.
- 27. Методика зоотехнического и биохимического анализа кормов, продуктов обмена и животноводческой продукции / Раецкая Ю.И., Сухарева В.Н. и др.- Дубровицы: ОНТИ, 1970.- 128 с.
- 28. Некрасов, Р.В. Система кормления свиней на доращивании и откорме с использованием про- и пребиотиков / Р.В. Некрасов, Махаев Е.А., Виноградов В.Н., Ушакова Н.А..- Дубровицы: ВИЖ, 2010.- 116 с.
- 29. Нормы и рационы кормления сельскохозяйственных животных. Справочное пособие / Под ред. А.П. Калашникова, В.И. Фисинина, В.В. Щеглова, Н.И. Клейменова.- М., 2003.- 456 с.
- 30. Панин, А.Н. Исследование антагонистических свойств спорообразующих бактерий *Bacillussubtilis* в отношении ацидофильных бактерий *Lactobacillusacidophilus* / А.Н. Панин, Н.И. Малик // Ветеринарный врач.- 2009.- №6.- С 13-16.
- 31. Тараканов, Б.В. Состояние и перспективы использования пробиотиков в животноводстве // Проблемы кормления с.-х. ж.-х. в соврем.условиях развития животноводства.- Дубровицы, ВИЖ, 2003.- С.106.
- 32. Тараканов, Б.В. Биопрепараты для повышения эффективности использования кормов // Зоотехния. 1993. \mathbb{N} 8. с.16-18.
- 33. Тараканов, Б.В. Механизмы действия пробиотиков на микрофлору пищеварительного тракта и организм животных // Ветеринария. 2000. №1. С.47-54.
- 34. Тараканов, Б.В. Пробиотики. Достижения и перспективы использования в животноводстве / Б.В. Тараканов, Т.А. Николичева, В.В. Алешин // Прошлое, настоящее и будущее зоотехнической науки : тр. / ВИЖ. Дубровицы, 2004. Вып. 62, т. 3. С. 69-73.Ушакова, Н.А. Анаэробная твердофазная ферментация растительных субстратов с использованием *Bacillus subtilis* / Н.А. Ушакова, Е.С. Бродский, А.А. Козлова, А.В. Нифатов // Прикладная биохимия и микробиология. 2009. Т. 45. № 1. С. 70-77.

- 35. Ушакова, Н.А. Выделение соматостатин-подобного пептида *Bacillussubtilis* В-8130, кишечного симбионта дикой птицы *Tetraourogallus*, и влияние бациллы на животный организм/ Н.А.Ушакова, В.В.Вознесенская, А.А.Козлова, А.В.Нифатов, Д.С.Павлов и др.// Доклады АН, Раздел: Общая биология.-2010.-Т.434.-№2.-С.282-285.
- 36. Ушакова, Н.А. Выделение соматостатин-подобного пептида клетками *Bacillus subtilis* B-8130, кишечного симбионта дикой птицы *Tetrao urogallus*, и влияние бациллы на животный организм / Н.А. Ушакова, В.В. Вознесенская, А.А. Козлова, А.В. Нифатов, В.А. Самойленко, Р.В. Некрасов, И.А. Егоров, Д.С. Павлов // Доклады РАН. − 2010. T.434. № 2. C.282-285.
- 37. Ушакова, Н.А. Новое поколение пробиотических препаратов кормового назначения. / Н.А. Ушакова, Р.В. Некрасов, В.Г. Правдин, Л.З. Кравцова, О.И. Бобровская, Д.С. Павлов // Scientific Reviews. − 2012. − №1. − С. 184-192.
- 38. Ушакова, Н.А. Пробиотик из *Bacillus subtilis* 8130 кормового назначения природный стимулятор пищеварения // Материалы III Моск. Междунар. конгр. «Биотехнология: состояние и перспективы развития». М., 2005. Ч.1. С. 303.
- 39. Ушакова, Н.А. Разработка пробиотического препарата для животных с использованием ассоциации *Bacillussubtilis* и *Enterococcusfaecium*/ Н.А. Ушакова, Е.В. Котенкова, А.А. Козлова, Е.В. Федосов, Р.В. Баслеров // Успехи современной биологии. 2011, том 131. №1. С. 64-69.
- 40. Ушакова, Н.А. Способ получения биологически активной кормовой добавки из растительного сырья / Н.А. Ушакова, Е.И. Наумова, Д.С. Павлов, Б.А. Чернуха // Патент РФ №2202224, 20.04.2003.
- 41. Холодов, В.М. Справочник по ветеринарной биохимии / В.М. Холодов, Г.Ф. Ермолаев // Минск, 1988. С.139-167.
- 42. Чернышев, А.И. Как сохранить телят / А.И. Чернышев. Казань, 1986. C.112.
- $43. \quad \underline{http://agropost.ru/skotovodstvo/kormlenie-krs/vliyanie-bioplyus2b-na-produktivnost-krs.html}$
 - 44. http://genetika.ru/vkpm/
 - 45. http://uvdc.ru/